
Control Enhancements in Existing
Temperature Monitoring System

Andres Rivero

Fermi National Laboratory - Computing Section
Indiana University

arivero@umail.iu.edu

Abstract

Fermilab performs active monitoring of temperatures in their data centers using a custom developed
software solution. The key feature of this software is to alert appropriate personnel when a temperature in
a data center goes above or below a defined threshold. In addition, the software provides reports to allow
facilities engineers to see trends. This paper describes the modifications made to enhance this software.
These improvements provide Fermilab the ability to easily adjust the control temperature thresholds, as
well well as extract data for analysis more effectively. These tools are now functioning in a production
environment.

I. Introduction

Maintaining optimal ambient temper-
atures in a data center poses a chal-
lenge that must be addressed in or-

der to protect computers containing data. The
computers must remain at a certain temper-
ature to avoid damaging the circuitry. As a
consequence, Fermilab has developed systems
that alerts the department of any anomalies in
the temperature such as LMsensors and Meta-
sys. These systems are in place to alert, how-
ever a visual aid was necessary to monitor the
changes in trend along a day. To solve this,
under the supervision of Dr. David Ritchie
a system called the Temperature Monitoring
System was developed. This system displays
the temperatures at the remote data center lo-
cation.

The project was a success. In addition to
the visual element, the software combined tech-
nology from the other running systems that
alert the department whether the temperature
dropped below or surpassed a threshold. In
the event that sensors malfunction, the alerting
system is configured to notify the team until
actions are taken. To prevent false positives,
the department requested control tools to fur-
ther enhance the existing monitoring system.

The current system lacks an intuitive and
easy way to change threshold configuration
data, a lack of an easy way to extract data for
reporting, and a crude system to display trend-
ing data. The upgrades I performed addressed
these problem in the current system.

This paper describes the methods used to
solve these problems. First, I designed a sim-
ple GUI with enough functionality to meet
the basic requirements and shared this with
the end users. After collecting user feedback,
I then enhanced the GUI and developed the
code to perform the necessary tasks. I explored
new technologies to solve these problems (e.g..
OpenpyXL), which lead to the successful de-
velopment of these solutions.

II. Methods

The investigations to improve the mon-
itoring system were divided into three
sections. Each section explains its own

methodology and obstacles encountered in or-
der to reach a final conclusion. The sections
are divided as follow: First, we explored the
addition of features that allowed user-friendly
manipulation of thresholds. Second, we investi-
gated third-party libraries that could contribute
with the implementation of an efficient export-

1

mailto:arivero@umail.iu.edu


ing tool. Last, we examined the integration of
Google Charts to produce graphs to modernize
the aesthetics of the website.

I. Threshold Editor

To determine whether this part was fea-
sible, I considered the specifications of
the software. Since we had no physical

access to the server, we used Microsoft Remote
Desktop to connect remotely. Lastly, to explore
what was the best approach, we gained admin
privileges to the source code.

The temperature monitoring system runs
in a Windows Server 2008 environment. The
temperature monitoring system has services
that run every 5 minutes to collect sensor in-
formation, and update the HTML files that
present this information to the user. To begin,
it was necessary to request proper permissions
to access the source code. In addition, it was
necessary to install packages in my environ-
ment (MacOS) that allowed connection to this
server. These steps were not trivial, however
once this was accomplished I was able to study
the source code and begin to make progress on
these enhancements.

To offer a solution to the stated require-
ments, I studied the development of graphical
interface modules. The preferred library, Tkin-
ter, is a package included with the Python com-
piler. Before designing the solution, I met with
stakeholders to discuss various ideas. It was
concluded that to build a functional tool, only
five widgets from the TKinter python library
were necessary. I used a drop down menu to
give the user a choice of data center rooms to
display. A radio button was used to select the
hot or cold aisle to work with. Labels were cho-
sen to describe the adjacent values. An input
box was utilized for user input of threshold
values, with buttons to allow for incrementing
and decrementing the displayed value in those
input boxes. Finally, a buttons are supplied to
submit the values as well as clear the values.

The implementation process consisted of
backing up the original system, installing the
new software, and verifying correct function-

ality. Verification was accomplished by test-
ing each component of the software using a
test plan. When the software executed, I veri-
fied that the initial display values were correct.
Next, I modified the threshold value and ver-
ified that the changes were made correctly. A
final check was accomplished by examining the
configuration file and verifying that the values
were correct.

II. Excel Exporter

There are many third-party python mod-
ules to handle Excel sheets with python.
The best option was OpenpyXL. This

module works with Excel 2007 and beyond
allowing the use of more rows and columns.
The server, computer and way to access the
source code was a constant. However, the
development of this new tool required deeper
understand of the data. Thus, I became ac-
quainted with the monitoring system.

Rather than copying data manually to a
spreadsheet,a method was devised to extract
the data using a python script. The first steps
consisted of creating a user-friendly GUI that
contained all widgets needed to fulfill the
requirements. Two drop down menus that
displayed the room and type of sensor (hot,
cold or all of them). Plus, three input boxes
that allowed feeding a begin and end date,
and the name of the Excel file. The "Save"
button performs the magic (via the OpenpyXL
library) to transfer the text data to an Excel
spreadsheet.

The test suite was basic and simple. The
first test was to verify that the initial data was
displayed correctly by the GUI. It was impor-
tant to verify that the correct list of sensors was
displayed for a chosen room. To test this, I
selected each room individually and verified
that the results contained the sensors for that
room.

2



III. Graphing Script

To improve the previous bar charts, we
explored Google Charts to improve the
presentation. The previous module used

HTMLgen to build an HTML file on the fly.
However, Google Charts used javascript to
construct and draw column charts, as opposed
to bar charts. In order to start exploring the ad-
vantages of this new technology, we activated
javascript in the development machine. This
was necessary for the graphs to load properly
in the browser.

Since javascript was a necessity, I wrote a
template file that built a simple HTML file,
but also created a script to plot the graphs.
The file consists of constant commands that
Google Chart recognized. The data for the
daily temperature of the sensor had to be set
in the script. In addition to the previous graph,
we decided to add a script on top of the page
that allows a user to choose a seven or thirty
days average. The HTML code consisted of
only place holders for the graph and control
filters.

To include data in a template, I imple-
mented a module that read the template and
wrote the daily data in its corresponding lo-
cation. As mentioned previously, there was
a location for the previous seven days, and
also, for the previous thirty days. Given the
template, the library copies each line in the
template to a HTML file until it meets the
criteria to copy the data instead. The module
was in charge of averaging the temperatures at
the given time slots the seven and thirty days
previous to the current date. This module runs
independently from other libraries the system
used. But, we had to import it as to allow the
webpages to be created when the system was
scheduled to run.

To show that the software was graphing cor-
rectly, one had to compare the new graphs with
the existing graphs. In addition, one could ac-
tually read the raw sensor data and verify that

against the graphs. To check, that the averages
were correct, I had to calculate the mean for
random time slots throughout the previous n
days.

III. Results

Most of the testing results consisted
of running scripts that would verify
correctness. Each script performed a

different function and verified something com-
pletely unrelated to all other tools. The results
confirmed that the software is performing as
requested.

The threshold editor performs basic error
checking, insuring that the data entered is
reasonable (i.e. no characters, high threshold
> low). When temperature configurations are
modified via this tool, an email notification
is sent to each member of the Facilities team.
Thorough testing has provided results that
prove that the error checking is functioning as
designed.

When entering dates, validation is done
to verify the correct date format. In addition,
the selected dates must be logical (i.e. Start
date must be before End date). If an incor-
rect value is supplied, the software shows a
warning message and fills in default values in
the appropriate fields. Thorough testing was
performed that verified that the software is
performing correctly.

The Excel export tool was developed as-
suming the sensor data was correct. One of the
unexpected outcomes of developing this tool
was demonstrating that certain sensors were
missing blocks of data. This was unknown to
the Facilities Engineering group. The cause of
this missing data is currently under investiga-
tion. To work around this data integrity issue,
software changes are being developed at this
time in the export tool to handle this case.

Verifying the correctness in the graphing
tool was easier to visualize. It has been shown

3



the new python module is displaying the in-
formation correctly and improving the use
of space in the webpage. The calculations to
compute the mean values has been manually
verified. This code is currently in the develop-
ment environment waiting on approvals by the
stakeholders to move to production.

The Threshold Editor tool was successfully
deployed to the production environment on
2014/07/15, and is now used to make changes
to threshold configurations.

IV. Future Work

To further advance the system, we brain-
stormed what upgrades could benefit
the software. The current system uses

a static approach and has no correlation be-
tween website and code. This presents obsta-
cles that make certain enhancement difficult to
implement. To address this, we plan to move
the data collected to a database. Moreover,
we intend to use new technology to develop
a dynamic software system that allows user
interaction. Unfortunately, there was no time
to do any work outside of planning, however,
the experiences gained this summer will make
this possible in the near future.

V. Conclusion

It is critical that data centers operate within
a range of acceptable ambient temperatures.
Fermilab uses a software system to monitor

datacenter temperatures in near real-time. My
work this summer has improved this system by
providing mechanisms to accurately and eas-
ily change the alarm threshold values, as well
as providing sophisticated graphing and data
export tools that will allow for better trending
analysis to proactively spot problems.

VI. Acknowledgement

Iwould like to express my deep gratitude to
Mr. Tim Kasza, Mr. Adam Walters and the
rest of the Facilities team for their impor-

tant contribution in the development of these
enhancement controls. Without their feedback,
this project would not have been successful.
Also, I would like to express my appreciation
to Ms. Diane Engram, Ms. Linda Diepholz and
Dr. Elliott McCrory for their assistance and
having given me this wonderful opportunity.

Finally, I would like to extend my thanks to
my supervisor, Mr. James Fromm, for his guid-
ance and encouragement during this Summer.
I would also like to thank Ms. Lauri L. Car-
penter for the quick lessons on Google Chart
API, and Django. My grateful thanks are also
extended to Mr. Randolph C. Reitz for adding
sense of humor to the long meetings.

References

[Google, 2014] Google Charts. Google Charts.

[Lutz, 2013] Lutz, M. (2013). Learning
Python,5th Edition. O’Reilly.

[Flanagan, 2011] Flanaga, D. (2011). Javascript:
The Definitive Guide. O’Reilly.

[Beazley, 2009] Beazley, D. M. (2009). Python
Essential Reference, 4th Edition. O’Reilly.

[DeMarcus, 2007] DeMarcus, T. (2009). Imple-
menting E-mail Alerts to the GCC Tem-
perature Monitoring Program.

[Mukasa, 2006] Mukasa, C. (2006). Tempera-
ture Monitoring in GCC.

[Ben-Judah, 2005] Ben-Judah, S. (2005). Gar-
nering Temperature Sensor Data to Dis-
play on a GCC Base Diagram Illustration.

4

https://developers.google.com/chart/

	Introduction
	Methods
	Threshold Editor
	Excel Exporter
	Graphing Script

	Results
	Future Work
	Conclusion

